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ASYMPTOTIC EFFICIENCY AND

SOME QUASI-METHOD OF MOMENTS ESTIMATORS

R. R. Read
Naval Postgraduate School
Monterey, Ca. 93940

ABSTRACT

The report contains the asymptotic efficiencies of some candidate

estimators which provide alternatives to maximum likelihood in some common

probabilistic settings. The alternative estimators can be found with

measurably less effort than solving the likelihood equations. They include

the method of moments and similarly constructed estimators that involve

the harmonic mean. The most successful example found deals with the

negative binomial distribution. Here, the harmonic mean estimator has high

efficiency in regions where the method of moments estimator has rather low

efficiency.
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I. Introduction

The need for readily computed parameter estimates is great.

Maximum likelihood estimators are known to be asymptotically efficient, but

often they are very hard to find. The most popular alternative is the method

of moments which usually yields readily computed estimates, but sometimes

these estimates are not very efficient. This report looks at the efficiency

of the method of moments and of some similarly constructed quasi-method

of moment'estimators.

The basic idea is to select a system of estimating equations which

equates various statistics to their expected values. The method of moments

does this for sample moments of order one, two, etc. We propose to consider

also moments of order zero, minus one, and perhaps other functions. The

examination of the consequent efficiencies may aid in the building of

intuition so that a wiser selection of estimating functions can be made in

new situations when they appear.

Moments of order zero and minus one require positive data. The former

is the geometric mean and the latter is the harmonic mean. They form part of

a general family, f(r) _ _In r]lr of nondecreasing means (where xl,...,x

forms the data). When dealing with the harmonic mean, we will be setting

n-L (- [f(-l)] - I) equal to E(I/X) because, for the parent populations

treated here, the latter value is easy to obtain. Similarly when dealing

with the geometric mean, we will be setting l ln xi (= ln f(O)) equal to

E(ln X). In this form, the geometric mean appears in many maximum likeli-

hood systems. This suggests that alternative quantities, that are close to

means with r = 0, might be profitably exploited. The results give some

support to this idea.

The structure of the efficiency computations utilizes the theoretical

work presented in a companion report [121. The pertinent material is

I
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summarized in Section II of the present report. Section III contains

applications of the idea to two, one-parameter parent populations, Poisson

and symmetric beta. Some speculations for interpreting these results are

made. Section IV is devoted to two parameter settings; gamma, negative

binomial, and beta.

Much computational work is necessary to support this development and

the details are relegated to the appendices. Appendix A contains general

relationships among the required population moments. Specialization to

Poisson, gamma, negative binomial, and beta is contained in Appendices

B, C, D, E (resp.). Computations are performed by APL programs and these

are included too, as Appendix F.

II. Methodology

It is assumed that the estimating equations have the form

g(x,e) = 0 (2.1)

where x = (xl,... ,x) is the data vector of a random sample from the specified

parent population, e' = (81,...,,) is the parameter point which belongs to

an open subset of p-dimensional space, and g' = (gl,... ,g). Primes denote

transpose. In order for the system (2.1) to have a unique solution e, it

is necessary (by the Implicit Function Theorem [16]) that the Jacobian

361 ... e

The following structural assumptions are made:

(i) Each g (x,6) for j = l,...,p is a symmetric function of x, i.e.

is invariant under permutations of x1,... ,x

42
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(ii) E ~g (X,O)} = 0 for j = i
1

.. i.
(iii) Var{g (X,6)} = cj(0) + o(-) for j = 1,..., p.

(iv) The g (x,6) have bounded continuous partial derivatives with

respect to Gl,..., p  for j =l,.p.

(v) e, which is the solution of (2.1) is consistent and asymptotically

normal.

Assumption (i) is modest and expected of any reasonable estimating

scheme. The meeting of assumptions (ii) and (iii) is a matter of scaling

and arrangement. Assumption (iv) is needed so that the asymptotic covariance

matrix is well behaved. Assumption (v) is always desirable and convenient

since it implies that the estimators are asymptotically unbiased and the

ellipsoid of concentration [4] is characterized in terms of the inverse of

the asymptotic covariance matrix. Efficiency computations are based on its

determinant.

Equipment for verifying (v) is contained in [9]. There, the functions

g. are averages of the form n g.(xa) for j = 1,...,p and thisgjxiO no i= = I,., ad i

structure is consonant with the present set of assumptions. All of the

cases treated in this report have this structure.

Much license is taken in what follows. The purist is referred to [9].

Let A(x,O) be the p by p matrix of partial derivatives {gj/3ek}
k

Assume that the elements behave as in (2.2)

Ajk(xe) - E{Dgj/De k  (2.2)

as n - . The resulting limiting matrix is denoted by A or A(e).

The assumptions allow the first order expansion

3
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g(x,e) = g(x,e) + A(x,e + P(6-6))(0-e) (2.3)

where p is a diagonal matrix of random numbers belonging to the interval

[0,1]. Since the system is soluble, g(x,e) = 0 and we can write

(0-6) = -A-(x, e + p(0-6) g(x,8)) (2.4)

since the continuity of A implies that of A- 1 and of g. Letting the

asymptotic covariance matrices, as n - , be defined by

M = limit nE(0-6)(8-e)' (2.5)

C = limit nE{g(X,e) g'(X,0)} (2.6)

it follows from (2.2) and (2.4) that

M = A- 1 C(A')-1  (2.7)

The method of maximum likelihood fits into this setting. The parent

population has density f(x,O), and (2.1) takes the form

1 1 n Zn f(x.,e)
S r n I =0 for r=l1....p (2.8)n r n il 0r

Assumption (ii) requires the regularity coxiditions [10] as does the relation-

ship

E(S S -nE a2 n f(xe0) = hA (2.9)r k (ae De k rk(29

wiere A is the information matrix. Using (2.2) and (2.6) it is seen that

both A and C are equal to A and hence

M = A (2.10)

follows from (2.7).

4



Now suppose that only the first q likelihood equations (2.8) are

used in the system g = 0. Let us denote this subset by W = 0, and the

remaining p-q equations by h = 0. Thus in partitioned form (2.1) becomes

g = = 0 (2.11)n

Proceeding formally, (2.6) becomes

C =liitn ~p') E(ph') (C 11 C12? (.2limit n = hp) Eh' (2.12)
E(N'p) E(hh') / C2 C2

The information matrix can be partitioned likewise

=  Al l  A1 2  (2.13)

A 21  A 22

Further, define a p-q by q matrix

= {E( h.I/3k)}, j = 1,...,p-q; k = 1,... ,q (2.14)

and a p-q order square matrix

= {E(3h./M k)}, j = 1,... ,p-q; k = q+l,...,p (2.15)

It is shown in [12, Sec. IV], that

A1  -g1
C = 1 21 (2.16)

-g21 C2 2

where C2 2  is as (2.12),
- Al11 -AI2

A = 21 g22 (2.17)

5



and

M- IA l l  AI 2 )

M = All 12 (2.18)
A 21 H

where

H = A21G11 A12 A 21 G1 2g22 - (A21G1 2g2 2)' +g2222g22

G 1{A -
11 ={11 - 912C22g2}

-1 G (2.19)
G12 11 Ag21G22

G [C A-1g'1-
22 22 g -i 11

Because of (2.7), the determinant of (2.18) is

IM-1 = 2(2.20)

and it is useful to draw attention to its computation. Using partitioned

form, see [6, p. 165], its ingredients have determinants

JCi = JAI 1 11C 22 - gmA-lgl2

(2.21)
JA I = JAllA-g22 -

11 11g 22 - g 2 1 A1A1 21

and this is useful in computing the asymptotic efficiency, [12]

Eff(e) = IM-ll/Ii (2.22)

In the special case of p = 2 and q = 1, (2.19) reduces to

4



1 2 2
H = "7F {A1 2 C2 2 - 2A12g21 g2 2 + Allg22 (2.23)

and the determinant of M -  reduces to the especially convenient form

IM-If = (Al1 g2 2 - A1 2g 2 2 )
2

A2 (2.24)
11 22 - g21

and the denomination of (2.24) is ICI.

III. Single Parameter Settings

Poisson.

The Poisson random variable X has density

f(x;X) = e-XX/x: for x = 0,1 ... (3.1)

and the derivative of the log likelihood is

X
S = -1 (3.2)

It is well-known that

A = E(S ) 1 (3.3)

and the sample mean is the minimum variance unbiased estimator for all sample

sizes. It is also the maximum likelihood estimate and the method of moments

estimate.

Let us look further solely for academic purposes. Since the Poisson

has the property that its mean is equal to its variance it follows that the

sample variance s2  is also a "moment" estimate of \. Moreover, the idea

7



can be extended. There are many other statistics that can be equated to

their expected values and the resulting equations solved uniquely for X.

One other will be considered here, namely, the averages of reciprocals of

the {1 + xi}l. The one is added as a convenient device for avoiding

division by zero. The result will be called the harmonic mean estimator.

Since s is directly an estimate of X, its asymptotic efficiency

is quickly and easily expressed. Using (2.22), (3.3), and (B.5) we have

gff(s2) =
= + X2A2  (3.4)

The harmonic mean estimator is characterized by the equation (see (B.7))

y (1- e ) = 0 (3.5)

where

ll+x. (3.6)

Equation (3.5) is in the form g = 0 (i.e. (2.1)) and satisfies the assump-

tions. The resulting estimate, X , can be computed using the iteration

function that falls naturally out of (3.5), namely,

-X
1  (1 - e ) (3.7)

r+l fy

and X - X for all initializations X > 0, but convergence can be
r 0

quite slow if a poor A0 is chosen. Then asymptotic variance C (see

-1
(2.6)) of (3.5) is the variance of (1 + X) which can be computed from

(B.7) and (B.8). The quantity A of (2.2) is obtained by differentiating

(3.5) with respect to A,

8
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1 e-A -
A (1) e (3.8)

2

* 2
Using (2.22), (2.7) we have Eff(A ) = A 2/C, or wore explicitly

Eff(X) = (1 - e - eX ) /Var 1 (3.9)

The efficiences of the two estimators are compared in Figure 3.1.

Of course there is no point in using any estimator other than A = x, but

the graph suggests that the harmonic mean may be profitably used in other

problems in which a choice must be exercised.

Figure 3.1
Asymptotic Efficiency

( Poisson )

.8

.22
Eff (s2 1

2 4 6 8 10 12 14 16 18 20
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Just for fun, let us compare the values of the three estimators x,

2 *
s , A when applied to some famous data. First, the number of deaths due

to mule kick in 200 Prussian army corps years. The frequency counts are

109, 65, 22, 3, 1 for variable values 0 thru 4 [7, p. 109]. The estimators

are

x = 0.61 , = 6109 , * 6093

and agreement is rather good. Second (Rutherford Chadwick data), the

number of radioactive disintegration in 2608 time intervals of 7.5 seconds

each [4, p. 1501. This time we have

x = 3.867 s = 3.633 , X f 3.886

The sample size is much larger but the value of X is in a range of lower

2efficiency for s .Also, the radioactive decay is more properly modeled

with a pure death process and this may help explain the smaller value of s

One final comment. The convergence of the iteration function (3.7)

has importance in finding the maximum likelihood estimate for A from a

Poisson population in which the zero values have been truncated. That is,

a trial that produces no counts does not come to the experimenter's

attention [10, p. 3-13]. The density is

-A x

-Ax' x 1,2,
-X X!

and the maximum likelihood equation is

1-e

which, as a function of A, is the same as (3.5).

10
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Symmetric Beta

A Beta random variable with equal parameter values has density

f(x,a) = r (2o _ xa(lx)a for 0 < x < 1, 0 < a (3.10)

[r~a)]1

Using the psi function [1],

d ln r(a) (3.11)(a) = da

one can write the derivative of the log density as

S = 2p(2a) - 2.p(a) + ln(x(l-x)) (3.12)

and

A = 2 '(a) - 4W'(2) (3.13)

by (2.9). Let ln x = n i. ln x. and express the maximum likelihood
n i=l

equation as

1
4(a) - 0(2a) = {ln x + ln(l-x)} (3.14)

so a, the maximum likelihood estimate, is a function of the geometric

mean of x and l-x. Also, it is difficult to find.

Let us turn to the method of moments. Because of symmetry, see (E.11),

(E.12),

1 2 1, 4(2a+ 1)

Thus x cannot be used and we turn to the second moment. The form g = 0

bec omes

s 2= 0 (3.15)
S 4(2ci + 1)

ind the estimator can be found explicitly

11
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R 1 1
8s2 -(3.16)8s 2  2

and using (2.2), (2.7) produces

4 2n Var(a) - 4(2a + 1) Var(s 2) (3.17)

The right side of (3.17) requires that (E.2) be used with (A.2). The result

is not compact and is produced only by computer program.

A harmonic mean option is available since

E(1) 2a - I - E-- 1- (3.18)

(see (E.13)) for a > 1, and the variances are finite if a > 2. Easy

calculations, exploiting (E.14) and (E.15), show that both y and z,

where

nII. n
Y n lxi z = - x. (3.19)

i

should be used instead of either one alone in order to reduce variability.

We select the form g =0 to be

(a - l)(y + z) - (4a - 2) 0 (3.20)

and solve explicitly

a y z - (3.21)
y + z 4

Application of (2.2), (2.7), (E.14), and (E.15) produces

n Var(,i*) (2a - l)(a - 1)2  for a > 2 (3.22)
22

12
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Figure 3.2

Asymptotic Efficiency
( Symmetric Beta )

1.0

.6- (a) f (a*

.4

1 2 3 4 5 6 7 8 9 10
a

The efficiencies of these two estimates are compared in Figure 3.2.

The second moment estimator, a, is uniformly better than the harmonic mean

estimator, a , and this result needs interpretation in the light of the

success in the Poisson case. This time the averages of X-  and (I-X)-

were used instead of (1+X)- , the latter being difficult to manage with

the beta distribution, and the parameter must be at least two in order

for the variance to exist. Also the positive sample space is 0 < x <,

which entails large and variable values for the (xil), and this may explain

the lack of success. The estimator a may still have some uses because

4(unlike at) we have a simple explicit expression for its variance (3.22)

4 and its efficiency is competitive for a more than (say) four or five.

13



IV. Two Parameter Settings

Gamma

The gamma random variable X has density

f(x;a,$) 1 x -I e-X/a (4.1)r (Ca)ac-

and the partial derivatives of its logarithm are

x

B 2 B (4.2)

S -- In x - In a - (a)

where p(a) is the psi function (derivative of log gamma). The maximum

likelihood estimators (a,S) is found from (4.2) by replacing x with x

and in x with In x = n 1 in xi. Thus it fits into our generalized

moment scheme utilizing the arithmetic and geometric means. To solve the

system, one sets S = x/a into the second member of (4.2) and search for

the root of In a - , (a) = in x - In x, which requires a psi function

capability [1,3]. This is not difficult with a large computer, but may

be a challenge for a small one, e.g. a hand held calculator. Viable

alternatives are available using the ordinary method of moments and a

generalization that exploits the harmonic mean.

The information matrix (2.9) is

A = 1(4.3)

1/6 'a

whose inverse is

44
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A-1 =(4.4)cup' (c)-i1

where primes denote derivative.

The ordinary method of moments equates x and s to c8 and a3

respectively, and the resulting estimator is

s 2- -a , x2/S2 (4.5)

Using 81 = 8 and 82 = a in order to conform with (4.2), one can apply

(2.2) to obtain

A= 2a (4.6)

Note: Although the method of moments shares an equation with maximum likeli-
hood (x/2 - a/ = 0), there is no advantage to using this, through (2.18),

in this case.

The matrix C is obtained from (C.5), (C.6), and (C.7). Then (2.7)

can be applied to get

a 2 (+l)

M = 2(n+l) (4.7)

and

IMI = 2(n+l)8 2  (4.8)

Turning to another choice, let us recognize that the ordinary method

of moments uses moments of order one and two, while maximum likelihood

uses moments of order one and zero. Heuristically one might find advantage

4



in moments of order one and minus one. Consider for the system (2.2)

(see (C.2) and (C.8)),

x - a8 0

(4.9)
1

B 8 ( -i)

where y -n i/x. and the consequent estimators

* i e*

S=x -- a (4.10)
Y xy-l

which satisfies 8 > 0 and a > 0 since the arithmetic mean is larger

than the harmonic mean. Proceeding as before we obtain, for a > 2,

al (al)2

and
5 2 2a - 3 -

* 2-)2~ 2(a-i)2

M 2(a-1) : 2 (4.12)a - 2 -

and(

[M*[ 28 2 (a-i)2
-MI 282 0- 2 for a > 2 (4.13)

The asymptotic efficiencies of the estimators (4.5) and (4.10) are

computed from (2.22) using

JAi (ap'(a) - 1) (4.14)

These efficiencies do not depend on the scale parameter, 8, and can be

16



plotted as functions of a, as is done in Figure 4.1. Also, the former

appears in [15]. The alternative (a ,B ) catches up to (a,a) at a = 3

and remains better thereafter. The relative efficiency of the latter with

respect to the former is (see (4.13) and (4.8))

* i2
= ((4.15)

IMI (a-2)(a+l)

It is less than 100% for all a > 3 and falls below 90% for 4 < a < 7.

Figure 4.1
Asymptotic Efficiency

( Gamma) *)1.0- Eff (c,B )

Eff (OC, )

.6 m

.4-

I 2 3 4 5 6 7 8 9 10

FIGURE 4.1. Asymptotic Efficiency (Gamma)
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As a numerical example, the three estimators were applied to 135

observations on the service time of the check-in queue at a major hotel.

The gamma distribution fits quite acceptably according to chi square

criteria. The results are:

8 = .303 8 = .305 = .298
^*

6.33 a = 6.31 a 6.45

Counterexample: This opportunity is taken to show that the representation

(2.18), which is the main theorem of [12] , is false when one drops the

assumption that the subsystems P = 0 (2.11) are likelihood equations.

We use the system

i =0

- (c-l) 0

s 2 os 2=0

which has an equation in common with the method of moments (4.5), U_ this

common equation is not part of the maximum likelihood system. This system

has explicit solutions

* 1 1 1 s2 -
-- + -+4s = +

y ys

One readily develops, using (4.11) and (4.6)

1 1

B = 2(-1) "(CL-l) 2

A =

and from (C.7), (C.9), (C.11)

4



1 01
(a-1)2 (a-2)

C =

0 2aB 4 (a+3)

Using M- 1 = A'C-'A, we calculate

+ 2at a-2 + 1

2 2 (,-1 2 (,+3)

2(aCl-) 0(a2) B 2(a+13) B(-) + B(+---

a-2 + 1 a-2 + 1B.. (a-!) S (0+3) (C-1) 2 + 2e (0+3)

and this, clearly, has no submatrix in common with (upon inverting (4.7))

2 3 2 2a + 3

a 2 (a+l)

Negative Binomial

The negative binomial density is parametrized

f(x;r,p) = r(r+x)) qx pr for x = 0,1,2 .... (4.16)

0 < r, 0 < p < 1, p+q

and the partial derivatives of its logarithm are

S = r/p - x/q

(4.17)
S = Xr+x) - q(r) + In pr

Using the basic recursive formula for the psi function [1],

4 19



x

(r+x) - r + j

one may express the system of maximum likelihood equations as

x - rq/p = 0

x. (4.18)

ave 11 + n p = 0
i=l,....n j=l r -1 + j

Solving (4.18) is quite difficult to manage without a large computer.

Appendix F contains an APL program (PSIB) which accomplishes it.

The information matrix can be developed using (2.9). The result is,

using e1 = p and 62 = r,

A r/qp 2  (4.19)
-i/p A22

where

A22 - p'(r) - E(zp'(r+X)) (4.20)

The properties of A22 are developed in Appendix D (see (D.22) and (D.26)),

along with the series representation of the determinant (D.25),

JAf = -L r. n (4.21)
n2 n + 1 (n+r)!

which converges rapidly for most values of p. For purposes of computation,

one may as well use (4.21) in (4.19) and solve for A 22 9 thus

4k

1l + p2 Aj} (4.23)
22 rq

20
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To estimate by the ordinary method of moments, we use (D.5) and form

the system (2.1) to be

px - rq = 0
(4.24)

p 2s - rq = 0

The explicit solution is readily seen to be

-2

r X (4.25)P=2 ' 2  x
S S-

and it cannot be guaranteed that p < 1 and r > 0. Differentiating (4.24)

and taking expectations yields the matrix

A rq -q (4.26)

r(l+q) -q

Combining (2.6), (4.24) and (D.6) produces

1 l+q

C = rq (4.27)

1 + q 1 + 2(r+2)q + q

and finally the formula (2.7)

p q2( + -- -q---)

2(r+l) +2(r+) (4.28)

rq pq r 2

0and

= 2(r+l)p2/q (4.29)

21
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Let us turn to the question of using a different moment in the second

equation. Since the negative binomial has positive probability mass at

zero, we use averages of the (l+xi) as was done when the Poisson case

was considered. Perhaps that level of success can be matched.

Letting y = I i( ,+x use for the system (2.1)

px - rq = 0

(4.30)

r(r-l)qy - p + p = 0

because of (D.7). The system (4.30) cannot be solved explicitly, but it

can be managed with a hand held calculator. Use the first member to obtain r

as a function of p and its derivative

r= dr = x (4.31)q dp 2
q

and substitute into the second member of (4.30) to obtain a function f

of the form

f(p) = pr + (r-l)qy p

pry+ p(y-i + -y) (4.32)

and having derivatives

df - p rx (q + ln p)
dp (y -1+ xy) + q 2

q

The solution of f(p) = 0 can be obtained by Newton's method, always

remembering to update r as well as p. The initialization p = .5 and

4 r = x appears to be satisfactory, but normally convergence would be faster

if the moment estimators (4.25) are used.
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The resulting estimator will be denoted by p , r . From (4.32) it

is seen that

f(0) = -y < 0 , f(l) = xy > 0

so that 0 < p < 1, and r > 0 follows from this by (4.31).

Let us turn to the development of the asymptotic covariance structure

of p , r . Taking partial derivatives and the expectation of (4.32) to

produce the coefficient matrix A of (2.2) yieldssr/p -q
A* (4.33)

rpr-l - 1 r rl
q r 1qrr-l1-prlnp

with the help of (D.7). Attention is drawn to the fact that

r
limit = p - p ln p (4.34)
r- 1 r - 1

The covariance matrix C of (2.6) is derived from (4.30) with the help of

(D.5), (D.7), and (A.5). The result is

rq rqpr - p(l-pr)

Irqpr - p(1 pr) (r-1) 2q2 Var(!+j)(.

Let us draw attention to the fact the first equation of (4.17) is a multiple

of the first equation of (4.32) rather than being identical. This is the

reason that (4.33) and (4.35) are modifications of (2.17) and (2.16) rather

4k than exact analogies. Thus the bookkeeping that follows must be done

carefully.
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The direct development of the matrix M from (2.7) with (4.34) and

(4.35) as input is messy. Instead let us recognize that (4.30) shares an

equation with the likelihood system (4.18) and use (2.18). Thus, with A

given by (4.19), we have

*-i r/qp2 -i/p

M = (4.36)

( -1/p M2
2

where M2 2  is obtained from (2.23) and ICI from (2.16). Thus

22= 1 g22 C22

SqP 
(4.37)

II r 2 22c - c22 -g2l
qp

and (g21 ' g2 2) is the second row of A in (4.33) and C2 2  is taken from

(4.35). Using (2.24) we obtain

IM*I1- =- g2 2 + p g21/ICI

and (4.36)

ICI = r2 (r-l)2q Var( +) - 2

P

The asymptotic efficiencies of (p,r) and (p r ) appear in Tables

4.1 and 4.2, resp., for p = .1(.1).9 and r = .5(.5)5, 6(1)19 where the

parentheses indicate the indices of advancement. The efficiency of (p,r)

is monotone increasing in r for each p. It is lower for the smaller

values of p. The efficiency of (p ,r ) is high for the smaller values

of r and decreases (generally). It is not monotone for p .1, .2.

*24
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The relative efficiency of p , r with respect to p, r, i.e.,

Rel eff IM*1-I.IMI

* *

appears in Table 4.3. Generally p , r is preferable for r less than

or equal to (say) 2.5. In general p, r is preferable elsewhere, but it

does not matter much for small values of p.

The three estimation schemes were applied to the Cricket score data

of Reep, Pollard and Benjamin [13], which provided the following comparisons.

Cowdry Barrington Graveney

x 1.692 2.095 1.570

2
s 4.343 4.939 4.474

(1+x) -1  .603 .538 .626

n 156. 116. 107.

p .329 .345 .317

r .831 1.014 .729

p .390 .424 .351

r 1.080 1.543 .849

p .371 .326 .389

r 1.000 1.012 1.000
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Be ta

The beta density has the form

r .L+_±) xa-i (l-x) -i (4.37)f(x; r) r()x

for 0 < x < 1, O< a, 0 < 8

and the partial derivatives of its logarithm are

S = ( - p(a) + ln x
(4.38)

S = p(c+B) - !p(8) + ln(l-x)

The information matrix is, for e1 = a, = 

1 '2

A VOL) - V(a+) (4.39)

The system of maximum likelihood equations

ln x = () - 6()

(4.40)

ln(l-x) = p(8 ) - 4(a+6)

uses the geometric means of x and l-x, and is difficult to solve. What

other pairs of statistics might be substituted?

Clearly x and (l-x) cannot be paired since they are functionally

related. The latter is merely l-x. Let us first develop the ordinary

method of moments. Using (E.4) and (E.5), choose the systems

(a+8)x - - 0
(4.41)

(u0+8) 2 (.i+E+l)s - '= 0

and solve explicitly for
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s 2 - x -)s 2 -x(l-x)
a , S - x(4.42)

1-x X

It may occur that a < 0, a < 0.

The coefficient matrix A of (2.2) is

A (4.43)

a__-(--f +  1  -a(+-ff + a)

a+ + 1 (.4

and C of (2.6) takes the form

C = (a+S) 3 (a+B+l) Cov(x's2)

c= (4.45)

(a+( ) 3(a+s+l) Cov(xs2) (+6) (++I)2 var(s2 )

and the use of (E.2) thru (A.l) and (A.2) does not appear to simplify in

any useful way. Appendix F contains programs to compute !M1 = ICI/IA2.

Let us turn to the pair of statistics

Y = n xi  z x.(4.46)
l x n l-x

which are not functionally related. Using (E.8) we may choose the system

(a-l)y - (+3-l) = 0
(4.47)

(3-l)z - (,)+S-l) = 0

for 1 ' 1, 3 > 1. The solution is

30

4



C Y(z-l) B = (4.48)
yz - y - z yz - y - z

Clearly y > 1 and z > 1 but the denominators are not necessarily positive

since zy - y - z + I = (y-l)(z-l) can be less than one.

For the system (4.47) the coefficient matrix becomes

, a-i

A= (4.49)

and with the help of (E.9) and (E.10) one can calculate

-2 1

C = (OL+B-l) (4.50)

-1 6-2

for a - 2, 3 > 2. Use of (4.49) and (4.50) in (2.7) does not produce a con-

venient expression for M . However its determinant is easily managed.

For fun, let us also try a system based on moments of order one and

minus one. (This would seem to straddle the two geometric means appearing

in maximum likelihood.) We are lead to

(OL+6)x - a = 0
(4.51)

(a-l)y - (a+6-l) = 0

and the resulting estimate

*:(v-l)x - = (yl(-) (4.52)

yx-l 1VX-l

4
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and this satisfies a > 0, 6 > 0. (But do not forget that use of (E.6)

in (4.51) requires a > 1.) Proceeding in the usual way, we calculate

+ a

A* (4.53)

~a+B~l (a-FB+l)

=~ -B 2

Again M does not have a convenient form. The determinates of (4.52) and

(4.53) are expressed

JAI = ) i

(4.55)

Jj - 2 2

for a > 2.

The efficiencies of (4.42), (4.43), and (4.52) are compared in the

tables that follow. Table 4.4 contains the efficiency of the ordinary moment

estimator. Efficiency is high if a is not too far from 3 and both are

at least two. Elsewhere they are low, but still the choice because all the

numbers in Table 4.4 are better than their competitors in Tables 4.5 and 4.6.

The pair (a ,B ) is generally better than (1 ,8 ) but not uniformly so.

It matters little since (t,3) is the "hands down" winner. This result

parallels what was learned in the symmetric beta case. The variable X- I

is unstable in this population.
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TABLE 4.4. Eff(ca,) BETA POPUIATION

.5 1.0 1.5 2.0 2.5 3.0 3.5

.5 O-.493 0.554 0.537 0.507 0.477 0.451 0.429
1.0 0.554 0.713 0.747 0.739 0.719 0.696 0.674

1.5 0.537 0.747 0.820 0.839 0.835 0.822 0.806

2.0 0.507 0.739 0.839 0.878 0.889 0.887 0.878

2.5 0.477 0.719 0.835 0.889 0.912 0.919 . 918

3.0 0.451 0.696 0.822 0.867 0.919 0.934 0.938

3.5 U.429 0.674 0.806 0.878 0.918 0.938 0.948

4.0 0.411 0.653 0.790 0.867 0 .912 0.93E . 952
4.5 0.395 0.635 0.774 0.855 0. 904 0.933 0.951

5.0 0.382 0.618 0.758 0.843 0.895 0.928 0.948

5.5 0.370 0.604 0.744 0.831 0. 866 0.921 0.944

6.0 0.360 0.591 0.731 0.819 0.876 0.914 0 .93E

6.5 0.351 0.579 0.719 0.809 0.867 0.906 0.933
7.0 0.344 0.568 0.709 0.799 0.858 0.899 0.927

4.0 4.5 5.0 5.5 6.0 6.5 7.0

.5 0.411 0.395 0.382 0.370 0.360 0. 351 0.344
1.0 0.653 0.635 0.618 0.604 0.591 0.579 0.568
1.5 0.790 0.774 0.758 0.744 ,.731 0.719 0.709
2.0 0.867 0.855 0.843 0.831 0.819 0.809 0.799
2.5 0.912 0.904 0.895 0.886 0.876 0.867 0.858
3.0 0.938 0.933 0.928 0.921 0.914 0.906 0.899
3.5 0.952 0.951 0.948 0.944 0.938 0.933 0.927
4.0 0.959 0.961 0.961 0.958 0.955 0.951 0.946
4.5 0.961 0.966 0.968 0.968 0.966 0.963 0.960
5.0 0.961 0.968 0.972 0.973 0.973 0.972 0.969
5.5 0.958 0.968 0.973 0.976 0.977 0.977 0.976
6.0 0.955 0.966 0.973 0.977 0.980 0.980 0.980
6.5 0.951 0. 963 0. 972 0. 977 0. 980 0. 982 0. 983
7.0 0.946 0.960 0.969 0.976 0.980 0.983 0.994
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TABLE 4.6. Eff( ,B ) BETA POPULATION

.5 1.0 1.5 2.0 2.5 3.0 3.5

2.5 0.119 0.202 0.258 0.297 0.326 0.347 0.364

3.0 0.163 0.276 0.353 0.407 0.447 0."u77 0.500

3.5 0.184 0.313 0.400 0.461 0.506 0.540 0.566

4.0 0.196 0.333 0.426 0.492 0.540 0.576 0.605

4.5 0.204 0.346 0.443 0.511 0.561 0.599 0.629

5.0 0.209 0.355 0.454 0.524 0.576 0.615 0.645

5.5 0.212 0.361 0.462 0.534 0.586 0.626 0.657

6.0 0.215 0.366 0.468 0.541 0.594 0.634 0.666

6.5 0.217 0.369 0.473 0.546 0.600 0.641 0.673

7.0 0.218 0.372 0.476 0.550 0.604 0.645 0.678

4.0 4.5 5.0 5.5 6.0 6.5 7.C

2.5 0.378 0.389 0.398 0.406 0.412 0.418 0.423

3.0 0.519 0.534 0.546 0.557 0.566 0.574 0.581

3.5 0.588 0.605 0.619 0.632 0.642 0.651 0.659

4.0 0.627 0.646 0.662 0.675 0.686 0.695 0.704

4.5 0.653 0.672 0.688 0.702 0.714 0. 724 C. 733

5.0 0.670 0.690 0.707 0.721 0.733 0.743 0.752

5.5 0.6E2 0.703 0.720 0. 731-  0.746 0.757 0.76E

6.0 0.691 0.712 0.730 0.741- 0.757 0.768 0.777

6.5 0.698 0.719 0.737 0.752 0.765 0.776 0.785

7.0 0.704 0.725 0.743 0.758 0.771 0.782 0.792
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APPENDIX A

General Variance and Covariance Formulae

Connecting the Mean, Variance, Harmonic Mean

Let X1 ,... ,Xn  be a random sample of size n and denote the sample

mean with
in

n

the sample variance with

2= 1 - 2

the inverse of the harmonic mean with

y=.[ !n I Xn

and the inverse of the shifted harmonic mean with

1 i

It is well known that E(R) = p, E(s2 ) 02 when the population mean, ',

and variance, a 2, exist. Let mr = E(Xr) and vr = E(X-U)r" The follow-

ing relationships are needed.

- 2 1 3'
Cov(,S )= - {m3 - 3m2mI + 2m I

1 (A.1)
n'3
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Var(s) nm 4m3 m + 3m2 - 4 4 + 2-a 4 (A.2)
Vans 4 3 1i 2 jny l

1 a4 2 4={4 - +- o4

n 4 n-

2 2 W 2

Var( (X_) 2 ) 4 2 (4-212) +4 (A.3)Vat (n -A.2

1 n 2n3

Cov(X,Y) = { {1 - E(X) E(I/X)} < 0 (A.4)
n

11
Cov({,Y') = - [1 - [1 + E(X)] E(-)} < 0 (A.5)

n l+x

Cov(s 2,Y) = 2E(1/X ) + m 2m 1E(1/X)} (A.6)

_ 1 (P i - 42 M- + P1

2, 1 2 1

Cov(s 2,Y) = n { - (1+W) 2 ] E(---)+ + } (A.7)
n 2 +

The proofs of (A.1) to (A.7) follow. It is convenient to record

the relationships

2
m2 = 2 +

3
m= l3 + 3w2 + 3 (A.8)

m4 = 4 + 4p3w + 6P2 2 + 14

To enhance the readability, the symbols E, V, C will be used to denote

expectation, variance, and covariance (resp.). Parentheses and subscripts

will be used sparingly.
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Proof of (A.4). Consider

EXY EEXE(1/X)
n2 ii

n

= [ {n + n(n-1) EXE(I/X)}
n

from which we subtract EXE(1/X) to produce (A.4). The fact that (A.4) is

negative follows from the presumption that X > 0 and the consequence that

the harmonic mean is less than the arithmetic mean. Thus (ave Xi) x (ave -) > 1
xi

unless (all x. = constant) and apply the law of large numbers.
1

Proof of (A.5). Follows from the fact that C(l + X)Y' = CXY' and the

application of (A.4).

Proof of (A.6). Consider

n(n-l) Es2 Y = E 1 (X -)

= E _1 ( _X2 n 2 )

x . X.X.
= EZE a - ZE 1

X n Xk

- nEX + n(n-l) EX 2E - EX - 2(n-l) EX

- (n-l) EX 2E - (n-l)(n-2) E 2XE -

and divide through by (n-l) to get
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1 2

= -m + (n-l)m2 E 1 - (n-2)m2E k

2 1

Then subtract n(m 2-m2)E I to obtain the first version of (A.6). The

second version follows from (A.8).

Proof of (A.7). Follows from (A.6) because s2 and w2 are invariant under

translations.

Proof of (A.1). Let us work with

E-s2 1 2 1 3
E n(n-l) E{XX. - n (LXi)

11

Sn {nEX3 + n(n-l)EX 2EX - EX - 3(n-I)EX 2EX- (n-i)(n-2)E 3X}
n(n-l)

1 {EX3 + (n-3)EX2EX - (n-2)E3XIn

-1 {m3 + (n-3)m2 ml (n-2)m 3
n 3n221m1

3
and subtract m2m I - mIn. The second version follows from (A.8).

Proof of (A.2). Let us begin with

24 2 22 2 2+ 4
(n-1)2Es4  E(ZX P n EZX.(ZXj + E( X )

n

and treat the three main ingredients separately.
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E(ZX )2 - nEX 4 + n(n-l)E 2X 2  (A.9)

EX2(Z Xj) 2 - nEX4 + n(n-l)E 2X2 + n(n-l)(n-2)EX2 EX + 2n(n-1)EX3EX (A.10)

E(ZX 1 )4 . nEX4 + 4n(n-l)EX 3EX + 3n(n-l)E 2X2 + 6n(n-1)(n-2)EX 2E 2X

+ n(n-1)(n-2)(n-3)E 4X (A.11)

The proper combination of (A.9), (A.10), and (A.11) produces

Es 4 = 1 {EX 4 _ 4EX3EX
n

+ --L [(n 2-2+3)E 2X2 -2(n-2)(n-3)EX2 E 2X+ (n-2)(n-3)E 4x]}

The subtraction of a4 in the form

4 E2X 2  
2EX2E2X + E4X

yields

nVs - 4EX3EX + 3E2X - 4a4 + - 4
n-i

and this is (A.2). The second version follows from using (A.8) and modifying.

Proof of (A.3). The variance of this form of the sample variance can be

developed from (A.2) using (A.8). It also appears in [7, p. 183].

I
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APPENDIX B

Moments of the Poisson

The Poisson random variable X had density

f(x;A) = e- xX/x! , x = 0,1.2,... (B.1)

2
and it is well known that W = x, = A. The probabi2'ty generating function

is

G(u) E(uX) = eA(1u) (B.2)

and the moment generating function can be obtained from (B.2) by the replace-
u

ment e for u. Moments can be obtained by repeated differentiation.

We record

E(X) =

2 2
E(X2 ) = A + x

E(X3) 2 3 (B.3)

E(X) = A + 7X2 + 6A3 + x 3

Use of (B.3) into (A.2) produces

= A + 3 2  (B.4)

Var(s 2) = 2 {2A 2 + X} + o(-) (B.5)
n n

Cov(Xs "k (B.6)
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The moments of (1+X) can be obtained by integrating the

generating function (B.2)

1 1 1 -Af1 1
E(I- X) - E f uXdu f G(u) du e eAu du = (1-e-l) (B.7)

0 0 0

1 2 1 X X- eAUV
E( 1 2 - E 1 f u Xv du dv = ff G(uv) du dv = e ff e du dv

0 0

-A 1 Xl d - I -
ei f u 10e -- du

0i

= e i jj! (B.8)

1

This opportunity is taken to record an alternative way of obtaining

moments, (B.2), which in this case is somewhat easier than the differentiation

of the moment generating function. One begins with the generating function

G(u) = E(u X ) and replaces the argument u by a product of dummy variable

uv ... z containing as many factors as the order of the moment to be calcu-

lated. Then one takes a partial derivative with respect to each variable

u, v, etc. and the desired moment is obtained when each variable is set to

unity. For example, E(X 2) can be obtained from

a2  2 x 2Xl-

G = au avG(uv) = au av E(uv)X . E(Xu X-)vX- (B.9)

4 The four moments (B.3) can be obtained in this way replacing u

with uvwz in (B.2). The resulting derivatives are
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G = AG

U

G uv= XG[14. XuvwzI

G = XGfz(1 + XuVWZ] + XUVWZ2[1 + Xuvwzl + Xuvwz 2)
Uvw

G Cw Xuvw G U + XGjjj + Xuvwz] + z~uvw + 2zXuvw(I+Xuvwz)

+ 2u2v 2w 2z 2+ 2z~uvw}
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APPENDIX C

Moments of the Gamma

The gamma random variable X has density

f~x~ct, 1 a ___C-i _ (C/l

r (CL) a

and it is well-known that

a 2 =a 2 (C.2)

Direct integration produces the formula, for r > 0

E(X r) r r(ct+r) (C.3)

and for r < aL

E (X-r) = Ir(-r) (C.4)

Use of (C.3) in (A.1) and (A.2) produces

Var(X) -1 2 (C.5)
n

-2 =2 3(C)
Cov(X's - 0nC6

Vrs2 2a4 + 3 (C.7)

Using (C.4) one readily calculates
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1 1
E( ) = a(a-1) . < a (C.8)

Var( ) 2 2 < a (C.9)

and letting Y 1 In (i/X)n ), we find that, with the aid of (A.4),

Cov(RY) =(0n(a-1) 1 < a (C.10)

and with the aid of (A.6)

Cov(s 2,Y) = 0 (C.11)

Because of the formula

r'(y) f in(y) y e dy (C.12)

0

one can develop, for r > - a,

E(Xr in X) = Br r(a+r)

r " (in a + (a+r)) (C.13)

since r'(a) - I(a) ,#(c).

4k
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APPENDIX D

Moments of the Negative Binomial

The density has the form

F (r+x) x r
f(x;,r,p)= x'.Fx) qppr for x = 0,1.... (D.1)

0 < r, 0 < p < 1, p+q = 1

Its probability generating function

r

G(u) = E(u) = p r (D.2)
(l-qu) r

will be exploited broadly. Successive derivatives of (D.2) evaluated at

u 1 1 produce the factorial moments

m(s) EX(X-1) (X-s+l) = (q/p)S r(r+l) (r+s-1) (D.3)

to which one may apply some orderly substitution and obtain the first four

mome lts, using A = q/p

EX = Ar

C.X" r(r+l) + Ar (D.4)

EX3 . A3r(r+l)(r+2) + 3A 2r(r+l) + Ar

E(4  A 4r(r+l)(r+2)(r+3) + 5A 3r(r+l)(r+2) + 4A 2r(r+l) + Ar

The mean an6 variance of the population are
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=rq/p a 2 - rq/p 2  (D.5)

Use of (D.4) in (A.1) and (A.2) provides the covariance matrix for

the ordinary method of moments

n Var(X) =A
2 r + Ar = rq/p2  a

n Cov(X,s 
2 ) = 2A3r + 3A2r + Ar =a 2 1+q

P (D.6)
2 4 3 2

n Var(s ) = 2A r(r+3) + 4A r(r+3) + A r(2r+7) + Ar

=2 [2(r+3)q+p2 ]/p
2

The harmonic mean alternative requires

1 r
E(1 P-P (D.7)

E( ) (r-l)q

E (1)2 (r-1)q u 1)r1 du (D.8)

for r # i. The case r = 1 is treated in [12, Appendix A]. Expressions

(D.7) and (D.8) are justified next along with computational formulae for

(D.8) when r is either a whole number or a whole number plus 0.5.

Proof of (D.7). The generating function (D.2) is integrated.

1 i 1 rLn1l r

iL = f G(u)du = rf1  du - = p-p

E(X 0 0 (1-qu)2  (r-l)(-q)(l-qu) r-i 0 (r-l)q

as required.
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Proof of (D.8). Replace u by uv and integrate twice.

2 1 1 1 ( r u=l
E(1i= = G(uv) du dv= f dv I(r-l)qu uu i

r 1 I
= --(r-l)q 0 uu [-~qurl- i] du

as required.

Computational formulae require managing integrals of the type

r= 0 u(l-qu)r - u] du (D.9)

Clearly Jo = 0. It is useful to apply the partial fraction representation

repeatedly.

r + r-l (D.10)
u(l-qu) (l-qu) u(l-qu)

Since

r qdur__ 
l 

10 il-qu r  P

we have, from (D.10),

1 r 1 +
Jr Jr-l + l r-1

Let <r> be the greatest integer in r and apply the above formula to get

the representation

>i 1

~which is valid for r > <r>.
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Let r =<r>. One can show directly from (D.9) that

1J1 fn q du = -in p (D.12)

and then

pi-- [i - in p = [r-jpr - In p (D.13)
r p j=l

Accordingly it is recognized from (D.8) and (J.9) that E(l/l+X) 2
= [fpr/,r-l)q]Jr_1

which, together with (D.7) and (D.13) enables

Var( r-2 p (p_pr) 2 (m14

Var(-X) (r-l)q t'2 j [prJ.pr] _ in p - (r-l)q (D.4)

for r an integer > 2 (empty sum is zero), and for r = 1,

Var = P- { j  (in p)2} (D.15)
a(X q _j1 2  q

This latter formula is developed in [12], see (A.3) and (A.5).

Let r =<r> + .5. The exploitation of (D.11) requires dealing with

r-<r> 1iJ/2 L u

2
Making the change qu = sin provides for manageable integrals of

trigonometric functions. See [14, p. 316]. The result is

Jl/ =  1n 2 _(D.!16

/2 In +
I + 'p
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and

i2 I <r>
E( - ) (r1-) j = ~ pj_pr, + pr

(r[L J/ (D. 17)

1+) (r-l)q __2 r-j 1/2

which is valid for <r> > 1. For r = 1/2 one needs, from (D.9),

J- Yl-u ]du1/l2/ f

= _ q u 1 + f [ 1 l1 du
u=0 0 u - - u

= 2,p - 2 + J1/2 (D.18)

using formula [14, p.316]. From (D.8)

12 2p In 2
E(-f +,) (- p - 2 J/} q / n p- 2 (D.19)

S q 1/2 q l+/ -

for r = 1/2.

The information matrix (4.19) contains a difficult element A 22'

.-.2¢). It may be managed using an integral representation of the tri-

ga.rma function [1, p. 259],

y' (r) = - f in___ l dur-1.0
f1-u u du (D.20)
0

It follows that

A22 = '(r) - E{4'(r+X)}

1 in u [ur-i E(ur-l+X ) I du

00 1 r

I I 1 u r- 1 r du (D.21)

0 (1-qu)r
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This relationship can be expressed better if we make the change of 
variable

w = pu/(1-qu)

and manipulate to obtain

1 In(p+qw) r-l
A 2 2  0 f dw (D.22)

There is advantage in using (D.22) in the development of the determinant 
of

A, (4.19),

JAI = r n(pr2qw) r-i dw 1

qp P

fln(p+qw) d(wr ) _ 11

1 1qp 0 ( i -w )(D.23)

qp 0

using partial integration and

n

ln(p+gw) =- !__(l-w) n-I

-w n

In this form it is easily checked that

limit - 1 f l d(n(p+qw) dw = -- 2

r - 0 qp 0 qp

(D.24)

limit Aj - 0
r - oD

For computational purposes one can exploit the expansion

4
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ln~p~q) n- d
(n-1) (1-w)r d

n=2

which, when used in (D.23), produces

JAI -1 2 q ndw
qp 2 0

p 1 r+1 (n+r)I

n ,n
1 q r. n.

p 2n=1 n+t1 (n+r)!

Similar efforts applied to (D.22) can produce

n
A2 _ (r-1) -- a (D.26)
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APPENDIX E

Moments of the Beta Distribution

The Beta random variable X has density

fxc )= p(a + B) x a-l(l-x) 5-

f (x;C, rca) To8)

f'or 0 < x < 1, 0 < a, 0 <8 (E.1)

and

rca) =f xa 1e-x dx
0

This is called the B(a,S) distribution and it is useful to note that 1-X

has a B(O,a) distribution.

Moments are obtained directly by manipulating gamma and beta functions.

For r > 0

E (Xr) . I (cd-) r (a+r) =(+-) (a+r-l)! (E.2)r(a) r' (c,4 +r) (cu-l)! (a"~+ r-l)!

E[(Xr (_)s , @~6 =F c 3r(a +r) F (a+s) (E.3)

(l-) I (a) (3 ) Fr(a +6+r+s)

and the mean and variance follow

+a (E .4)

a 2 a (E.5)

Moments of negative order exist if a is large enough. If

a > r, 2 s then
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E(Xr) (a~4 r(a-r) (E.5)
r(a) r(a+-r)

E (X-r)(1_X) -s r (a+) r (a-r) r (o-s) (E.7)

r(a) r(a) r(a4-B-r-s)

and the harmonic mean option will be available,

E() 1+ 1 < a (E.8)

Var(1 (a+8-1) 2 < a (E.9)
0(a-) (a-2)

and if a > 1, B > 1

1 1 (a+8-1)Cov(j-,-j-) = - (B-1) (E.1O)

Symmetric Beta

Set a = a and obtain

= 1/2 (E.11)

a 2 = 1 (E.12)
4 (2oL+l)

E( 1 2a-1 1 < a (E.13)

Var(1 a(2a-l) 2 < a (E.14)

(a-l) (a-2)

Co1 (1) (2a-l)
Cov= - 2 1 < a (E.15)

(a-l)
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APPENDIX F

APL PROGRAMS

The function HARP performs the iteration (3.7) to estimate the

Poisson parameter from the harmonic mean. The left argument X is the

initial value (usually x) and the right argument is y of (3.6). The

function IMV computes the variance of y using (B.7) and (B.8). The

right argument is the set of parameter values, A.

V L-X HARP Y;LL
[I] L4-X
[2] Ll:LL-L
[3] L -(1-*-L) Y

[5] -Llxi(I L-LL)>-O.O0001
V

V V*HMV L;B;D,4;.'
[I] N- 5 0
[2] V(L"** )o. *iN,
(3] D- ((M-1 tpV).N )p(,i N) x iN) x!., N
14]j B -0( N ,M)p.*-L
[5) V-+IBx V*D
L6] V-V*L[7] i' Y-(( *-L) tL) *2

V

The function MONT produces E(X ) for the symmetric beta distri-

bution using (E.2) with a = B. The left argument is the (integral) order

of the moment and the right argument is the parameter. The function VAR

computes the variance of the estimator, a of (3.16) using (3.17) and

(A.2). Again the argument is the parameter
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VZ-R MONT A;N;I
Ell I4-0

(2] Z-(NN4-pA)pl

(1 Z-Zx(0(N,N)pA+I- )fAo. +A+I-1

V V- VAR A
[]V*-(4 MONT A)-(4x(3 MONT A)x(1 MONT A))-(3x(2 MONT A)*2)-4x(4+8xA)*-2

[2) V-4xVx(1t2xA)*4

T',e polygamma, functions are computed using PSI and JEX. When the

(scalar) left argument, N, is zero the psi function is produced. Integral

values of N index the order of the derivative of psi. The argument of

the function appears on the right. The technique comes from the asymptotic

expansions in Abramowitz.

V P-N PSI Y;C;IV;JIV;X;XX;YY;V;Z;';I
E1] A N IS THE ORDER OF THE DERIVATIVE OF THE PSI FUNCTION
(2] A Y (>0) IS THE ARGUMENT ,SCALAR OR VECTOR
[3] C-10

[5] P-Z-K4-(Py)p0

[7] -.Llxi( PIV) =P(-V)IIV
18] T-YE JIV]
19] 1-0
(10] L2:I-I~l
(11] YY-KKI]pT[I]
(12] Z(I]*U!N)x+/((YY-1 )+iXX(I])*-1+N

(13] .L2xtI<PJIV
[14) Z-V\ Z~ pJIV]
(15] K'-V\ KK
(16] L1:-,SlxiN>0
(17] F.-(.DK+Y)-(2xK+Y)*-1
(18] -2+126
(19] Sl:P-((UV-i)x(Y+K)*-,N)+(N)x.5x(Y+K)*-N+l
[20] P-( 1)*N+1 )xP+Z+N JEX Y+X
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VT

V J-N JEX Y;C;M;F;E;A
[i) A USED IN THE FOLYGAMMA FUNCTIONS
(2) C--C-( 5,(7*5),(5 7).(1i 25) .(5x455"11x691 ).(691+7x455))
[3] C-( (py ,Y) ,6)PC

[4) M-7
[5] F-(Y*2)o.X(2 2xlM-l)x(1 2xtM-l) (N 2xtM-1)X(N+1+2xtM-1)

[6] E-CxF
[7) A-( 746 )x( Y*-N+2xM)x( I 1+N+2xM) 1( !2xM)
(8) JAxI+E[;6]x1+EC;5]xi+E[;4]xi+E[;3]x1+E[;2]xi+E[;I]

The efficiency of the usual moment estimator (4.5) of gamma distri-

bution parameters is produced by EFF using (4.8) and (4.14). The efficiency

of (4.10) is computed by EFFH using (4.13) and (4.14), and the relative

efficiency (4.15) is the function REFF. Only the parameter a is needed

and it is entered on the right for all three. It must be > 2 for the

latter two functions.

V E-EFF Y
[I] E-(2x(Y+l)x((Yx(l PSI Yf)-l))*-l

V

V Ew-EFFH Y
EI E -2"(Y-2)*(Y-l)*2
[2] E-Ex(Yxi PSI Y)-i
[3 ] E-E*-l

V

V Z-REFF A
[Il Z-(A-l)x(A-1 )4(A+l)xA-2

V
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We turn now to the programs that support the negative binomial

distribution. The function MM computes the ordinary method of moments

estimators p , r of (4.25). The left argument is x and the right

2
argument is s

V M -X MM S
£1.] P4-X'S
[2] R (X*2)*S-X

V

The determinant of the asymptotic covariance matrix of p, r is produced

(see (4.29)) by DM, whose left and right arguments are r and p.

2
The function PSIB computes x (= XB), s (= S), y (= Y), the

estimators p, r (using MM), and the maximum likelihood estimate p, r

by applying Newton's method to (4.18) using p, i for initialization.

The left argument, F, is the vector of observed frequencies corresponding

to the right argument J, the vector of variate values.

V Z-F PSIB J;PH;PHD;Z;ZZ
Ill XB-(+/JxF) +/F
[2] S-( 1( +/F)-1 )x( +/FxJ*2)-(+/F)xXB*2

[3] Y*-(+/F J I) +/F
[4] XB M14 S
[5) R,P
[6] Ll:PP-P
[7] Z-+/(0 PSI R+J)xFf*+/F
[8] ZZ-+/(l PSI R+J)xF +/F
19] PH-Z-(O PSI R)-(aR)-R+XB
[10] PHD-ZZ-(l PSI R)-( R)- R+XB
[li] R-R-PH +PHD
[12] F-R+R+XB
[13) R,P
[14] -Llx(IPP-P)20.0001

AV
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The function INFI computes the difficult element of the information matrix,

A of (4.20), using (D.26). The left and right arguments are r and p,
22

resp. The vector r must be whole numbers except it will also handle the

values .5, 1.5, ... , 4.5.

V Z-R INF1 P;N;A;B;C;ZZ;J;V;Nl;NtW

[I] N-pp

[3] A-( (PN),oR-,R)PO
[4] J-0
[5] il:J-J+l
[62 V-(N+R[J])>55
[7] - L2x t (pN) =pNN -(V)/N
[8] ZZ-( pN IV/N)pO
[9] A[Nl;J]4-x/(ZZO.+iR[J]-I) Nlo.eiR[J]-i
[10] -L3xt(pNN)=0
[11] L2:A[:.;;¢;J](! :NN)x( IR[J]_I)-!N:REHj] I l
[12] L3:-LlxtJ<PR
[13] B-4?( ( PR ),N),oN*'2
[14] Z*C+. xA -B

The function DETI and DI both compute the determinant of the information

matrix, but the former uses INF in (4.19) and can handle the same set

of r values which are whole numbers plus .5. The latter, DI, uses (D.25)

and all values of r must be whole numbers.

V V-R DETI P
Ill V-(R INF1 P)xO(R-.R)o. (P.2)x1-P
[2] V-V-O( (PR),p P)pP*-2

V
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V D-R DI P;A;B;C;N;P1;J;Z
[] N - i _
[2] C-( 1-P- ,P). *N
[3] P-?4((pR-.R),pP)pP*-2
[4] A-((pN) ,pR-,R)p0
[5] Z-(pN)pO
[6] J4-0
[7] Ll:J-J l

[8] A[;J]-x/(Za.+tR[J])+No.+iR[J]
(9) -LlxiJ<pR
[10] B-Q((pR),pN)pN+1
[ll] D-P xD-C+.xA*B

V

The determinant (4.29) of the asymptotic covariance matrix (4.28)

is computed by the function DM

V D-R DM P
[] D4"2x(l+R.,R)o.x(P*2) i-P-,P

V

and the efficiency of the moment estimator is NBEF

V E -R NB EF P
[1] E4- (R DM P)xOR DE2I P

V

The function HAR implements the iteration scheme described in

(4.32) and produces the harmonic mean based alternative estimators p , r

from the system (4.30). The left argument is x and the right argument

is y.

V P-X HAR Y;PP;C;G;GP;Z
[Ill P -Q o. 5
[23 C4Y-1-YXX
[3] R-X
[4] L1: PP-P

[5] G-( ZP*R)-Y-CxP
[6] GPC+ZxXx(Q+*P) Q*2
[7] P-P-G*GP

[8] R-XxP4Q-1-P

(9] R,P.G[10] -LIxi(IG) 1E-6
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The Var(l/l+X) is computed by VHMl using (D.14) and (D.l5) for r values

that are whole numbers, and using (D.17) and (D.19) for r values that

are half way between whole numbers.

V Z-R VH111 P;AA;BB;B;T; PP;RR;S;H;HH;HHI;M;Ul; U2;J;N;A.'N;Q;SS
Ill A VAR OF x(1+X) FOR NEG BIN(R,P);R MUJST BE WHOLE OR WHOLE PLUS .

[4) -L3xi(pR)=0
[5] 1~-0
[1 Ll:I-I+l

[8] -(3+xr26 ) xiB4B
[9] B-B-1

[11] -*(2+126)xxB=LB
[12] S[I; ]'-2x2*l+P*0. 5
[13] BB-( PP.LB)pR[I]-l~iLB

[16] -L~xlILRR4-P

[19] R[U2Ii RR-RR++/ U2 ]-0.5
(202 1 (-2\1 S
[21] -( 2+1T26)xt O=t/U2
[22] S[U;2/iRR; ]-+( 2x*211+P*0.5)+2x(P*0.5)-1
[233 Z-Sx (H-~Po. *R)A IHl4-( R-1 ) x, -P

[24] !-((HH-(RR,PP)pP)-H)IHRiH
[2b] Z-Z-M*2
[26] L.:N(2x@50*Pxl1000)1e04-.-P

[2E. S5-?Pp 0
[29] W-0

[31] O'S-1/( Qe *i N'N) 1( PP,NNV)P AN-~J *2
[321 L x*jxjj< PP
[33] -(1+r26)x(+IUa )r-
[34] F-(-Ul)\R
[35] RE Ul/ tRR--RR+±/ Ul1 -1

[37] Zb! itRF; ]-Px(SS -Px ( (&*2) Q)f*Q
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The function DMSI computes the determinant of M from (4.36). Two

auxiliary functions are needed: G22 provides g and g2  from the

second row of A *in (4.33) (compare (2.17)) and DMSl is needed to handle

values of r - 1, special handling being required becuase of (4.34).

V X-R DMSI P;RR;PP;HH;C;L;G;G21;Z;U
Ell X-((pR) pP)pO

£33 Z-(L4R.(P*2)xQ4.i-P)xG4+OR G22 P
[4] Z-CZ+('OG21)*HM.((RR4-PR),P-p)

0P)*2
[5] Z'-Z(LxC-(((R).xQ)*2)xR VHMi P)-?QG2l*2
[6) X[((U)/l RR++/U;]4-3
(7] -(2+X26)xo .g./U

VZ-DMSl P;w
l) Z*-( (0.5x(*P)*2)+W.-1.P..P)*2
2] Z-ZM(PP)Pl VF141 P)x((i-P)*3))-(Wx.-)*2

V 7~-R G22 P;PP;RR;T;Tu';H;HzI;V;W

(2] HHR4'(RR,PP)PP
[3] Z.-HH-Ii
[4) V*-R~l

[6] .Hx,4(RR. PP) P

Cal C214-((PP,RR)oR)xHq4mq
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The efficiency of the harmonic mean based estimator p , r is computed

by the function EFF

V E-R EFF P
[I] E*-(R DMSI P)'OR DETI P

V

Both EFt and NBEF used DETI and, for that reason, are restricted to only

a few fractional values of r. The relative efficiency of p , r with

respect to p, r is not so restricted. It is computed by RELEF and accepts

any r > 0.

V E-R RELEF P

El] E-((R DM P)x(R DMS1 P))
V

Methods for computing the efficiency of beta distribution estimators

are supported by the following programs: The determinant of the information

matrix (4.39) is computed by the functions DINF and DDINF. The former takes

a single (vector) argument and produces a symmetric, squiare matrix of

values I for all pairs of components of the arguments. If the arguments

a and 8 must be ent red separately, then the two argument DDINF can be

used.

V LI'DIANF A;N;B;C
[] L-,L-Ao .+A
[2] 3B-(N,N-pA)ol PSI r
[3] L(Co.xC)-(C°o.+*C., PSI A)xB

V

V L-A DDINF B;M;N;CA;CB;D
El] L-,LAo.+B
[2] D-((M-oA).Y-pB)pl PSI L
£3] L-(CAO.xCB)-((CA-I PSI A) o.+(B-i PSI B)xD

V
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The function DETMM accepts two by two matrices A (on the left)

and C (on the right) and computed the determinant IMI = ICI/IAI2

of (2.7). The function ADET uses it to produce an array of such

determinants. The arguments H and C are four-dimensional and may be

thought of as an M by N array of 2 by 2 matrices. The left set, H,

are the coefficient arrays A of (2.2) and the right set, C, are the

covariances (2.6)

V M-A D ETMM C

Ei] M-([A )t. x CRA
[2] M-(M[I;lI~x,'[2; 2])-M[I;2].*2

V

V MM-H ADET C;N;I;J;M
[I] MM ((M i-2tpH),N-_ilpH)p0
[2 ] I J O
[3] LI:I-I+i

[4] J-C

[5] L2:J-J

[6] MM[I;J]-H[;;I;J] DET2MM C[;;I;J]
[7] -L2xiJ<N
[8] -LixiI<M

The computation of the efficiency of the ordinary moment estimator

(4.42) requires the coefficient array (4.43) and the convariance array

(4.45). The former is computed by the function COEFM and the latter by

COVM. Each takes a single vector argument and computes the required

values for all pairs of components in the argument. The function COVM

requires the beta distribution moments (E.2) and these are computed by

MONT.
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V H-COEFM A;N;B
[1] 11-( 2,2,.N,NpA )p 1
[2] H[1;1;;]+-(N,N)p-A
(3] H[1; 2; ; ]+-(NN)PA

[4] B-(A. xA )x(Ao. +A )(Ao .+A+i)
[5] H[2;1;;]-B+(Ao.-A)x(N.N)pA
[6] H[2;2;;]-B+((-A)°.+A)x(NN)pA
[7] H-H'( 2, 2,N,N)Ao..+A

V

V Z-R MONP A;N;I
[1] I-0
[2] Z -(N,N-PA)p1
[3] LI:I-I+I

[4] Z4-Zx(O(N,)A+I-I) Ao.+A+I-1
[5] -LIxiI<R

All these are utilized by EFBM which computes the efficiency (2.22).

The output is a symmetric matrix. The argument must have positive components.

V E-EFBM A;L;C;H;M

[1] L'-DINF A
[2] C-COVM A.
[3] Hi-COEFM A
[4] M-H ADET C
[5] E-'MxL

V

The efficiency of (4.48) is handled in similar fashion. (Also

with single arguments.) An array of 2 by 2 matrices (4.49) is produced

by the function COEF and the matching matrices (4.50) by COV. These are

used by EFBH to compute a symmetric matrix of efficiencies. The argument

must have all components > 2.
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V H-COEF A;N

[I] H-(2,2,N,N-pA)p-I
[2] H[ 2; 2; ;]-Ao .+A-1
[3] H[1;1; ;] OH[2;2; ;]

V

V C-COV A;N
[I] C-(2,2,N,N-pA)pl
(2] CC1; 1; ;]-(Aoa. +A-1 ) xOAo.aM-2

(3] C(;2;;]-C[2;; ;]--AO.+A-1
[4) C[2;2; ;](Ao.+A-i)x(Ao. A-2)

V

V E-EFBH A;C;H;L
[I] L-DIRF A
[2) H-COEF A
[3) C-COV A
[4) M-H ADET C
[5) E-+MxL

The estimator (4.52) is managed in like fashion, only this time

the arguments a (left) and 6 (right) must be entered separately with

a > 2, 8 > 0. The coefficients (4.53) are computed by the function COEFH

and the covariances (4.54) by COVH. These are drawn on by EFBMH to produce

the efficienices

V H-A COEFH B;M;N
[I1 H- (2,.2,(M-PA)N4.p Bp -I
(2) H[i;i; ;] -(Ao.+B)(f4,)N.._B
[3] H[11;2; ;] -WN.,Mf)oA) Ao+B
[4] H12;1; ; (A - 1 + B
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V C4-A COVH B;N;M
Ell C-( 2,2(M-PA ),N4.pB)pO
(2) C[1;i ;;)(Ao.XB)fAo.+B.1

(4) C(2;2;;]4-(A*.tB-l).(A-2)o.*B

V Eq-A EFEMH B;C;H;M;L
113 L-A DDINF B
(2) H-A COEFE B
(3] C-A COVH B
(4)- M4-H ADET C

[5) E-+MxL
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